Multi-Objective Control Design with Pole Placement Constraints for Wind Turbine System
نویسندگان
چکیده
The demand for energy world wide is increasing every day. And in these "green times" renewable energy is a hot topic all over the world. Wind energy is currently one of the most popular energy sectors. The growth in the wind power industry has been tremendous over the last decade, its been increasing every year and it is nowadays one of the most promising sources for renewable energy. Since the early 1990s wind power has enjoyed a renewed interest, particularly in the European Union where the annual growth rate is about 20%. It is also a growing interest in offshore wind turbines, either bottom fixed or floating. Offshore wind is higher and less turbulent than the conditions we find onshore. In order to sustain this growth in interest and industry, wind turbine performance must continue to be improved. The wind turbines are getting bigger and bigger which in turn leads to larger torques and loads on critical parts of the structure. This calls for a multi-objective control approach, which means we want to achieve several control objectives at the same time. E.g. maximize the power output while mitigating any unwanted oscillations in critical parts of the wind turbine structure. One of the major reasons the wind turbine is a challenging task to control is due to the nonlinearity in the relationship between turning wind into power. The power extracted from the wind is proportional to the cube of the wind speed.
منابع مشابه
Wind Turbine Transformer Optimum Design Assuming a 3D Wound Core
A wind turbine transformer (WTT) is designed using a 3D wound core while the transformer’s total owning cost (TOC) and its inrush current performance realized as the two objective functions in a multi-objective optimization process. Multi-objective genetic algorithm is utilized to derive Pareto optimal solutions. The effects of inrush current improvement on other operating and design parameters...
متن کاملSynthesis with Pole Placement Constraints for Offshore Wind Turbine Systems
The problem of robust H∞ dynamic output feedback control design with pole placement constraints is studied for a linear parameter-varying model of a floating wind turbine. A nonlinear model is obtained and linearized using the FAST software developed for wind turbines. The main contributions of this paper are threefold. Firstly, a family of linear models are represented based on an affine param...
متن کاملPhysical Modeling of a Hybrid Wind Turbine-solar Panel System Using Simscape Language (RESEARCH NOTE)
Being sustainable and producing little waste products, the renewable energy knows a rapid deployment. Unfortunately, the intermittent characteristic of these energies makes them difficult to control. The influence of this aleatory character can be reduced with the coupling of two or more sources of renewable energy and secondly with a sound management of storage systems. This new configuration ...
متن کاملAerodynamic Optimal Design of Wind Turbine Blades using Genetic Algorithm
Wind power has been widely considered and utilized in recent years as one of the most promising renewable energy sources. In the current research study, aerodynamic analysis of the upwind three-bladed horizontal axis turbine is carried out using blade element momentum theory (BEM), and a genetic algorithm (GA) is applied as an optimization method. Output power generation is considered as an obj...
متن کاملUnrestricted Wind Farm Layout Design With Optimal Control Considerations
Wind energy is a rapidly expanding source of renewable energy, but is highly intermittent. The performance of a wind farm, composed of a collection of wind turbines, depends not only on the placement of wind turbines in a farm, but also control actions taken by individual turbines. The wind turbine placement (layout) design problem involves adjusting turbine locations within a given area to imp...
متن کامل